Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase.

نویسندگان

  • Saswati Hazra
  • Raj K Batra
  • Hsin H Tai
  • Sherven Sharma
  • Xiaoyan Cui
  • Steven M Dubinett
چکیده

Lung cancer cells elaborate the immunosuppressive and antiapoptotic mediator prostaglandin E(2) (PGE(2)), a product of cyclooxygenase-2 (COX-2) enzyme activity. Because peroxisome proliferator-activated receptor (PPAR)gamma ligands, such as thiazolidinediones (TZDs), inhibit lung cancer cell growth, we examined the effect of the TZDs pioglitazone and rosiglitazone on PGE(2) levels in non-small-cell lung cancer (NSCLC) A427 and A549 cells. Both TZDs inhibited PGE(2) production in NSCLC cells via a COX-2 independent pathway. To define the mechanism underlying COX-2 independent suppression of PGE(2) production, we focused on other enzymes responsible for the synthesis and degradation of PGE(2). The expression of none of the three prostaglandin synthases (microsomal PGES1, PGES2 and cystosolic PGES) was down-regulated by the TZDs. It is noteworthy that 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme that produces biologically inactive 15-ketoprostaglandins from active PGE(2), was induced by TZDs. The TZD-mediated suppression of PGE(2) concentration was significantly inhibited by small interfering RNA to 15-PGDH. Studies using dominant-negative PPARgamma overexpression or 2-chloro-5-nitrobenzanilide (GW9662; a PPARgamma antagonist) revealed that the suppressive effect of the TZDs on PGE(2) is PPARgamma-independent. Together, these findings indicate that it is possible to use a clinically available pharmacological intervention to suppress tumor-derived PGE(2) by enhancing catabolism rather than blocking synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Prevention Research NAD-Dependent 15-Hydroxyprostaglandin Dehydrogenase Regulates Levels of Bioactive Lipids in Non–Small Cell Lung Cancer

Elevated levels of procarcinogenic prostaglandins (PG) are found in a variety of human malignancies including non–small cell lung cancer (NSCLC). Overexpression of cyclooxygenase-2 and microsomal prostaglandin synthase 1 occurs in tumors and contributes to increased PG synthesis. NAD-dependent 15-hydroxyprostaglandin dehydrogenase (15PGDH), the key enzyme responsible for metabolic inactivation ...

متن کامل

NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer.

It has been reported that two inducible prostaglandin synthetic enzymes, cylooxygenase-2 (COX-2) and microsomal PGE synthase, are over-expressed in non-small cell lung cancer (NSCLC). Using quantitative reverse transcription-polymerase chain reaction, we analyzed RNA levels of the key prostaglandin catabolic enzyme, NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH), in 19 pairs of NSC...

متن کامل

Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer.

Evidence indicates that the induction of cyclooxygenase-2 (COX-2) and high prostaglandin E2 (PGE2) levels contribute to the pathogenesis of non-small-cell lung cancer (NSCLC). In addition to overproduction by COX-2, PGE2 concentrations also depend upon the levels of the PGE2 catabolic enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH). We find a dramatic down-regulation of PGDH protein in N...

متن کامل

A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. Cyclooxygenase-2, which plays a key role in the biosynthesis of prostaglandin E2 (PGE2), is often up-regulated in CRC and in other types of cancer. PGE2 induces angiogenesis and tumor cell survival, proliferation and migration. The tumor suppressor 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a key en...

متن کامل

Nonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase.

Studies have conjectured that nonsteroidal anti-inflammatory drugs (NSAID) inhibit growth of various malignancies by inhibiting cyclooxygenase-2 (COX-2) enzyme activity. Yet, several lines of evidence indicate that a COX-2-independent mechanism may also be involved in their antitumor effects. Here, we report that NSAIDs may inhibit the growth of glioblastoma multiforme (GBM) cells through COX-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 71 6  شماره 

صفحات  -

تاریخ انتشار 2007